
JOURNAL OF CHROMATOGRAPNY 373 

CHROM. 3690 

THEORY OF TRANSPORT IN LINEAR PARTITION SYSTEMS OCCURRING 

IN CHROMATOGRAPHIC AND ELECTROPHORETIC MODELs 

J. KRAGTEN 

Natuurkundig Laboratorium der Universiteit van Amsterdam (T?&e Netkerlands) 

(First received February math, 1968; revised manuscript received July gth, 1968) 

SUMMARY 
‘, 

General formulae for the transport of matter, under the influence, of electric 
or dynamic forces and which distributes linearly between two states, are derived 
without any restriction about the nature of the partition process. The inoments of 
the concentration’ profile are calculated from the formulae.’ In those:moments each 
term is physically clear. From the results the already known formulae fbr special&d 
cases of the partitipn process can easily be derived. 

INTRODUCTION 

The following expression governs the transport of matter under influence of 
flow and diffusion in.the unidimensional cask’ 

ac 
( ) at,=- 

or in short notation 

(1) 

&c = -v-a,c + D-&c 

where b is the velocity of the’substance. ‘khe movement of the stibstake ‘may be 
caused by displacement of the fluid in which the substance is dissolved a’s is the case 
in chromatography, or by electric forces as in electrophoresis. 

The other symbols are as follows: 
c’ = concentration of the substance = c(x,t), 
D, = diffusion constant; D is assumed to .be a constant. 

In .chromatography and electrophoyesis the, moving, substance is distrjbuted 
between a “free” and “bound” state. Distribution may result from the presence of a 
stabilizing medium to which the substance is sorbed; cpmp+ formation with a 
second solute in exkess is another possibility. In all these cases the partition process 
is assumed to be quasi-linear, which means that (in the abse,nce of transport and 
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374 J.’ KRAGTEN 

diffusion) the concentrations f and b in the free and bound state respectively, are 
governed by 

w = -hf + leb 
I . , (2)' 

'. 

w= i--hf--J2~=~atf ,, ., 
.’ (3) 

where I, and L, are the mass transfer coefficients. 
With 

z = (Zl + la)-1 ! 

and the initial.condition f = fO, b = b, we have 
(4) 

t 

f=c;-,r-;> -T 
(fo + bo) + Z(ZlfO - Z&J) l e 

t 
b=(&) 

-_ 
vo +.bo) -r(zlfo-z~bo)*e = (6) 

where the partition coefficient 
: 

li ‘: *’ ” 
; 

.y =12 ,.,’ I 1 : :’ )1 ,I ,’ (7) 
r’ : . . , 

defines t&e equih:b&m state, .which is ap&oached e&ponentially with ,a time constant 
r,. whilef.+ b always equals Lfo 1; ho.- :. ‘. ,,, . ,, .: 

On adding this type of partition, term to.,equation (I) ,,the fpl@wmg equ.ations 
for the combination of streaming, diffusion and partition are obtained: 

a& - vf.a,f” - ihf - 22b) -I- &azzf 
. . 

(8) j : 
a& = - vb$& + (hf - &b) + Db’&& (9) 

’ When there’is dnly one state f and no diffusion &partition, ‘it can +asily be 
seen that the concentration peak will move with a v&city tij, because ‘j@-T.@) is a 
solution of the differential equation 

: adf = - Vf *,B,f . 
.I 8 

. . . 

From physical considerations it is clear, that after some initial effects the mass 
centre of (f-j- zj) will move uniformly with a velocity 0. ,: ,: . ‘, : ‘. : 1. :_ 

We will now transform to a new coordinate system moving with this velocity, 
by putting x’ =x --v’* C. This makes the mass centre stay .at.rest ‘with ,respectto this 
new system. (A proper choice of the origin of the coordinate system is cf c,ourse this 
massi centre.) ‘So 

‘-:, *. ‘./,‘,. .( .,: 
I . . ? . .. . ,,:.‘. I ; .I: *.. 

&f = a2Rf’ . . . 
I_ ., ,,...I, ., ‘,: ,, .,” (TO) 

L .*, * . 
hf’ = atf + VB a,f :.. r 1,. !, ‘! j, (II) 

with similar equations for b’ ana b; ” I : ‘: !: ” ., : :’ 

f,‘,, Suljs‘titu~ion-in‘eqnd. (8) and’(g) gives, dn’cmitting primes: ’ _i: , .y 
I . .” ; ‘.- ,’ .>: . ‘5 ,,I : .’ ., ;_ _‘:, 

I a,f’A’,(; kuf);&f A(tlf Lg2b): +.of.agif t I I t(’ .’ ,: “.: ,t12) 

.I’_ ., .~ ., . . ,.(’ : ,I. _I,. ., / 

-.(U”yb).a&+ (~lf_;.J2b)“+ &&,z, ’ ,I 

.,:‘, , *.:. ,I. I.,; . ,. “,” 
; 

. ..actitz *.: A. ‘.. ‘,‘. . Xx3) 
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TRANSPORT: IN LINEAR PARTITION SYSTEMS 375 

The, assumption of linearity. is quite correct .even in the presence of’ as.stabilizing 
medium if partition takes place in the homogeneous phase inside the stabilizing 
medium. The paper electrophoretic separation of metal,ions in a solution of citric acid 
in excess is a example of such a system; ‘,’ ‘I. ‘, 

In chromatographic columns the stabilizing medium. itself participates’, in the 
partition process. In ‘these heterogeneous systems the assumption of linearity is only 
approximately fulfilled. This can only lead to results more or less correct ,depending 
on the geometry of the system. Furthermore the equations do not include the statis- 
tical variations of the transport velocities’ caused by the grain’ or ‘fibre.,structure of 
the stabilizing medium. 

: (’ 4 

Temperature fluctuations arising from electricresistance differences.or from sorp- 
tion reactions are also neglected, just like micro-scale gravitational turbulences, etc. 

Thus, exact solutions to the equations (12) and (13) are .of limited, value as the 
equations themselves are open to criticism. Moreover, we get more information than 
required for practice. We ale interested in quantity, displacement, width’and skewness 
of the mass distribution (f+ b) and the intention is to deduce these variables from 
the measured signals. These signals are obtained either as a. function of time. (elution 
chromatography, gas chromatography) or as a function of place (electrophoresis, thin 
layer chromatography). There is a relation between the above mentioned variables 
and the moments of the signals which’are defined by the partial,integral:. ‘,; .” : 

Mg = s 6” -S(g) l iI& w h ere E is either the time or a coordinate depending on the 
experimental. conditions. ,These moments are a-preferably linearYfunction of the 
respective identically defined moments of the concentration distribution ; this function 
is determined by the instrumental conditions. The moments. of the concentration 
distribution are linear with respect to the above mentioned variables. 

Several authors have shown that it is possible to obtain the moments of the 
concentration distribution directly from equations (12) and (13), and depending on 
their inclination they calculate either the time moment+3 or the place mon~ents4-8. 

The time and place moments are of course strongly related to ,each other, as 
the separation process itself is independent of the method of definition and measure- 
ment. The mutual relationship will be discussed later in this paper. Although there 
is no fundamental difference between the two types of moments, we chose to calculate 
the place moments as during the calculating procedure ..the physical meaning is 
better. The place moments are yielded directly by integration of eqns. (12). and (13). 
It will be shown that specification of the partition process is not,. necessary.,.Only 
LJUNGGREN* has attempted to .calculate the’ place: moments .in a. similar way ,but he 
either neglected the thermal diffusion or the electric field. It will be shown that during 
the calculations the essence of the separation process can be followed step by step 
and the physical meaning and origin of each term can be easily understood.; 

DEFINITIONS AND MEANING OF MOMENTS 
,,’ . 

The separating.system consists of a column of infinite length’with a concentra- 
tion peak of arbitrary form localized in a small~region. . .‘. i .( 

The ith moments of the concentration distribution are defined by: 

Fi = Jx~-f.clx and Bi = Sx’*b-dx (x4) 

We then have ’ i’. “.-.’ 
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376 J. KRAGTEN 

,, F, is the total amount of substance in the free state; F, is a function of time 
only; .’ 

B, is the total amount in the bound state; **+, 
F, defines the centre of mass in the usual way. 

. . 

In addition, we define the coordinate xf of this mass centre by: 

Fl ” xf.Fo (IS) 

Similar relations hold for 23,. 
It is also well known that the variance ,u is indicative for the width of a distri- 

bution and that this quantity is defined by 

which makes 

J-G Fl 2 

pffx- - ( ) 
F2 

Fo 
*; 

=-- FO 
(17) 

Analogous relations apply to ,ub and B,, 

The third moments F, and,B, are related to the skewness of the concentration 
peaks. The discussion of these quantities is given in the corresponding section of this 
paper. : ” 
: We shallnow calculate the ith moments. To do so we need the following equa- 

tions derived from the definition (14) : 

Jx”*&f.dti = dlFI (18) 

j,&.&f.dx = I; 1 ;; * ’ “) 

,,+,r.a,,t.dx = 
I 

“b’; - l)Fi-a 
(i = 2, 3 . ..) 

(i =O,I) 

Similar relations hold for the bound state b. 

CALCULATION’ OF, THE MOMENTS 

The xerotk momerzt 
‘Integrating (12) and (13) along the x-axis using eqns. (r8), (19) and (20) we 

obtain 

dtFo’ = - (ZIFo - Z@o) (21) 

dtBo = + (W’o - J2Bo) (22) 

because only the partition terms contribute. This would be expected, as the chemical 
reaction is the only way of -changing .the amount of substance in .each state. 

As (21) and (22) are identical with (2) and (3), with initial conditions F, =F,,d, 
130 = Boo and inserting, c = L ilFo0 -Z,Boo and 

Foe + Boo = Mb (23) 

we have 
i 
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TRANSPORT IN LINEAR PARTl[TION SYSTEMS 377. 

t 

MO - tX*C? ‘F 
(24) 

t 
MO + c~e-~ (25) 

In fact in the partition-only case of (2) and (3) 
- .I 

fo 2 FOO and bo 2 BOO 

From these 

The 
(12) and (13) by x and integrating along the 

that as a result of (20). the diffusion term does’not contribute., We then have 

dtB1 =’ (tib - ;)Bo ,+ (ZlFl - Z&h) ‘: (29) 

With, ,. : ., ,. I 

Ml-= F.1 + B1 =a&& . . ” ; ,i ,428) 

we obtain from these equations for the velocity Vfb of the mass centre of the total 
amount of substance 

(29) 

So from the definition of v’ in the coordinate trz+nsforma$ion it follows that 0 is equal 
to the weighted arithmetic mean of vf and Vb : 

’ = (;-ft_;;), + (+),“” 
It follows from (2g), remembering 
should be at the mass centre, after 

,’ (39 
I . 

that the origin Of the moving koordiliate’sy&ixi 
the disappearance of the initial effects that: 

(31) 
‘I 

All further derivations will be made in moving coordinates only. To find the values 
of F, and B, we multiply (26) by I, and (27) by 2, and subtract the equations. From 
this we get after integrating* : 

Combining this equation with (x5), (24) and (28) we obtain for the separate mass 
centres of the free and the bound states: ,’ 

* d,, d,, d,, fl and f3 are constants dctsrmi,ped yy the initial conditions, d,, da, *a,,, fh and f4 
are constants dottWnined by the integratioii. 

,. ‘, ;’ ;: ,, (’ ^/ 
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E 

:’ ., Xf = - ub,)r + (d3 + d4t) ,--? 

Xb = - 

f 

- z)b)z -,- (d6 + hd) e-y 
. 

After disappearance of the exponential terms, which quickly occurs, we have: 

(35) 

(36) 

!37) 

2 .t . 
and not withstanding : 

‘: 0.. 
: %fb. = ? . 1 

The shift,‘bf the mass centres tith respect to each’other; acquired during the 
lifetime of the exponentials and the shift towards the origin are noteworthy.The shifts 
a&& from the fact that when a molecule moves in state “f” its velocity in moving 
coordinates equals (zJ~-3). The mean time for a, molecule. to be either in state. “f” or 
in state ‘W is equal to z. So we can understand both xf and xb as the mean displace- 
ment of,one molecule. These are equal to the displacements of the mass centres of the 
ensembles;‘: of, molecules.~ , _. : : ,. :’ : : ‘-., : :( ‘. , . . - 0 I ; 

The second moment 
. . _.: ,.I..: :“’ 

Following the same procedure ‘as for F, and 23, we get:for the second moment : 

(33) 

(34) 

! .:,: ‘..‘. 
. . ., 

,,‘..” . , ..‘..:,’ ; ‘.. i : . . . . 

c 2t ,. 

+ (I’1 + I”d) 7 + (f3 -I- t44fh7- 

: 

&$ying (17) we obtain for the variance of the’tctal, amount of.substance: 

IL .; 

I. ,, ,. .:(4x) 

.I 
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W-f3 =‘3{ bJ.ly - qe -t (WI - $&?) + WP1 + Db&) 

= 3 (Vf - w)z{ Wz - &&) + WWi ;+ DbBl) 

On substituting known F's and B’s: 

(48) 

C&Ms = 6 (*) ($$--) (vf - vb)zMO ( x;;x”, + 2(Df,--b) ) + ~XpOIl~nti~~9~ 

Integrating and cancelling of the exponentials gives 

S=So+(I2(V~~vb)~(~~)(~)(Df--b)+: 

+ 6(vf - ub)‘Z” (50) 

S is ‘,changing linearly, with time. ‘The first ‘time-dependant term is a. transport- 
.diffusion mixture term, which ‘has its maximum, for i = I:. The second one is a t&n& 
port?partitionterm with a maximum for y = 3.7 and rj3.7 and a iero value for y =I;,. 
We chn substitute (so) in (45) and get something like: 

(So -k /sat) 
tij;b ---Xmex =” 

I 
: 2(po -I- 2D’t) : 

(51) 

In most practical cases So w o and so (xfr, 
time-independent value (p/d’), 

-zmax) rises from zero to an asymptotic 
assuming that the concentration distribution is 

approximately Gaussian. The magnitude of this asymptotic value will be investigated 
in two extreme cases: : : ., : ,.’ 
(a.)The diffusion determines the width of the concentration profile.Then (vf-zlb)% < b 

,’ ” 
, 

B 
) a’= 

3 (-+-) (&) @S --d (fJf - vdz 

D, 
. 

The latter function for Db = o and y > I reaches the extreme 

452) 

, 

(53) 
’ 

(b) When (T.J~ - ZJ#%>D the asymptotic value transforms in 

with an extreme value of 

B -= 
4.0’ 

i (vf - vb)r = i (%f - xb) 

(54) 

(55) 

The importance of these derivations is that the, maximum distance between 
maximum and mean of the concentration profile is comparable with the shift of the 
mass centres f and b during the, separation process. : The skewness (q~~xrnaX)/~ 
diminishes with respect to the root of the time, as ‘it should, which ‘is in ‘agreement 

,‘with.the computer results of VTNK~ for his partition model. : :,,,, 

,yi C?iroWWO~.; 37, (1968) :3737384 



TRANSPORT: IN LINEAR PARTITION SYSTEMS 331: 

tiISCUSSION ,: ,‘. ,. ‘.,, 
,I. ,__ ,, ! ! :, 

We can now compare the results with’ formulae published,in other ,papers. : .:’ 

LJUNGGREN* made a theoretical study. of electrodiffusion by means of moment 
analysis. Me solved the’equations after introduction,,of the. moments by Fourier and 
Laplace transformations but he either neglected the ordinary diffusion’ or the’electric 
field. He, nevertheless; derived a partition-transport contribution to the diffusion 
term which agrees ,with the third term in ,eqn,. ,, (42). :’ 

In chromatography there ‘is the restrictron vb 
coefficient is related to R by y 

+ 0 and in ‘additi&i; our partition 
=.R/I -R. Substitution transform the pafiition- 

transp,ort term in the well known resultlo, ., :, 

’ A,u = 2R(1 -~R).~.t,.L’ ;. ,I I (fj6j 

VINJ$ n&de B chr6matographic: model in ! which ‘the @kti$on Qccui’S .bettitekn 
two rqws of unit : cells of, une~uai~vdlunie’ p’er‘ ‘tinit ,qf c&ta& area ana’ sepakteci b’y”ti 
membrane.. In’ this’ ‘model the partition: is controlled by the ‘diffusibn in the bound 
state b. This makes the kinetic constants ‘equal to 

. 

Substitution shows, agreement between his formulae’ and, equation (42). The 
first and third term arise from the weighted mean of the diffusion coefficients; the 
second term’in his formulae (34) ,originates from the exchange between partition and 
transport. 

‘. ,’ ‘- /’ 

In KuCERA’s paper l, the model .is assumed to consist of a column @led with 
small porous grains. In’this model the ‘partition occurs in .two steps, ‘tiiz. diffusion 
through the pores followed by sorption on the internal surfaces.,++ of all confining 
our, .attention tp the calculation, ,of ,the time-moments in. this paper, and neglecting 
for a while the extension to.‘a ,third ~$hase”, we should: expect ‘t&i, relation ‘between 

the ith time #$ +th place,moment to be simply 
L,_ ,. ,” 

.’ ,.a ., I 
; : ;, ,: I’; 

‘, 
GX 

:. (;)a.,/& : ;. ; ” !, 
:‘, 

,’ : _; 

‘_.; 
.In this case, ‘however, ‘,the. broadening, ,& the distribution by. diffusion and, other 
effects ,is neglected during- the time,.the .distribution passes the, f&d place x G.4. 
An impression of the correction for this is obtained by dividinga’normal, distribution 
into two parts and assuming that the.mass points of each part of the distribution lie 
at. distances +a and --a from the intersection. .iNow the’ elution time, for the peak 

, will be dt = 240. During this tinie the distance icr grows ac&ding td o2 = 2D’ l E with 
. 

: 
iD 

,._c’: qD’ 
‘“,’ :: : ., : ,. ,, ‘1 ,! 

240 
= 6*At = - 

: ,. . : 
iT ,’ : :’ .’ ;’ .‘. 

Half the mass shifts this distance making the shift of the mass point of ‘the, whole 
distribution equal to 243*/v’ or in time coordin@es AC’ = 2O’/@:As. the curve is lagging 

Z>ehind t!-+im+. q!scfePaj!cy “as !s be, a+!e+ givipg: : :‘, ,‘,, , : ;, ‘. 

. . lag . . ..L I, :2Df .i. 
,=7-k,, 7 

: .,, ,, 4 1, ., !A ;. ‘,,. 

v v” ‘:’ ,’ :. (57) :. (_, , ,,;’ ,_. ‘.. ::,,: .‘V.,’ .’ 
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The additional term for the second moment originates from the same effect. The shift 
in distance relative to the central mass point is zD’/O for each part of the curve. So 
the contribution tot && will :be (zD?/D) ~.~‘Substitution gives,:. .” 

I 
:I 

( i 1; ! “’ .I ,.. ,’ . I,,, ,, ._ ,;: .;: .;: ,,,.; ’ ‘I’ :,,.’ : 

ibl’. :.: , 1 ,’ , ,,,, ‘, ; o:,; . . . . ” ,/ , ,, f, .i ,‘:;I* 

, ,Bot,h equations agree with the ‘results~ 0% ‘&~~CERA 
I 

1. “The calculations here are 
of course not exact b’ut’ ‘they give ‘an idea’ of’, the origin, and,the: Ghysical beaning of 
the several terms ‘in’ the time mo’ments. ,, i 

-0 ,. : “. 

I<UJBIN~ obtained some different results on calculating the same time monients; 
The discrepancy arises from his initial conditions. He injects a block -function with a 
time width,&,, which gives ,a contribution to the first moment of 1/&, as a consequence 
of. the ‘mass $oint shift “felative. to’ the’ ‘origin of. t,heco,ordinate’ system. “For the same 
reason’ the second rnornenf is e&tend&l by’,i/,;&2 (the inertia moment. of ‘a rectangular 
box is 1/&z@) ..‘r’he’ distortion contributions, of Ku&Ei+are lost ,by ,an approximation 
in the calculation. .‘.? ;;. ;‘,’ .y (,. ., ,.., 

We can now look at what happens when the, number of states is extended. 
For three states we have: 

,,. :: 5, . I., 

‘. 

This’system &tends. by’ one. ec&ation, and simultaneously’ each equation bjy one 
exchange ‘term, for each ~dditidiial’ state. Simi.la$, to the .&se tiith two states; both 
the time constant k and the’f&5tors ‘ai ‘deter&&g the ‘partition of total ma&tie over ., 
the three states are only a function of &e kinetic constants’Z~‘In general, it is ‘a com- 
plicated function when both side and successive reactions exist. :An important 
conclusion is that there is only, one time constant z for the whole system. .I s ,; . . . ‘ 

A:,;~haract;~ristic’fa~t’~~om tlie’e,@ations (SC&or j’,is that the sum of ,all’kinetic 
tern+, ,is i&o: So, they ‘always’.vanish’ ,in’ the’ calculation ,of Mt. Consequently ‘from 
‘ekuations’ (26). and.(zi)’ it,follows :, ’ : 

: ,.I ; 
‘_ t . . I, . I,, : ,?‘, 

,. :* j 

. . 
, 

This equation is familiar to us from mechanics as it follows immediately from the 
definition of mass point, 

Equation (30) changes in the general case into 
; :. ,,. ,’ ‘I f ,;,,;. ‘. _’ .’ .,*I, ‘_ ‘_I ,. ‘\. 

5 
., :. . . : 

.,‘/ = af+f, f=b.“~b, + %Z’vd +I*.* , I. I ;. ,, .. ,,,,,I 
,,‘_ />’ ‘, : ,.‘. 

., ‘. ,‘- ,_: , _, _, . .; ,. &I. 

’ In, chromatography all velocities’ are z&?&o ‘except’vf making the reduced’velocity 
simply+qual tb the ‘fraction. of solute in the, mobile phase. This .can .be stated in- 
‘detiendently of the column model and is a fundamental law of chromatography8.’ 

J;;:.J%~~lzrifo&,., 37 (rg68)- 373-384 
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After introduction of .the movirig coordinate, system we get for the steady state 
similar to before: dtM, -0, xfb + o, Ed&, titc. 4 constant.. This implieti.: that (apart 
from an exponential.term the’ terms (L@, -Z@J; etc.-bccurringin the extended:.fpriii 
of equation, (26)‘.will not contain the .t&ms:of &iy.order in, t;.this: agrees with ehuation 
(32); 5% deF, T d&i= ;.I. = o. ‘By domparirig. the ,procedu& Sor ‘solutidn%f FF,‘and SF; 
combined with dimensional,+alysis ,it becomes &art hoiv the tin& constant z..depends 
on the Z-values and how.z~enters the equations.(33) atid.(34): : : 1 .‘. ” ::: 3 : i 

It can be verified that equations analogous to (33) and (34) can be derived and 
from these it can be deduced that. the shift of the mass centre of each state is the 
same as was found before (equations (36) and (37)). So the equation 

1:. _, . ,,,, ; .,:. i> .: 

, .&<, +,i __+ ,, ’ , (. ; .I. . 1’ ( ; :I : ,....(&+) 

. ,i.: 1,). 
may be s;ated as,? general equation. 

:. .,, .“,. ,: 
.I ’ ; ‘: ., ” 

In the same way ,as beforg we’ .&n derive the, time: derivative, of the secofid .’ 8. 
mom,er$ M. The equation, is: nearly the ??me as e&&on. (49)! ,O$‘. int+gi&in&%d 
cancelling of ‘;ihe ‘exp&entials %F ,get’ An ,e,quati?n like ‘(42) .; .SQ. in ,gFGe$ $+,: $$l!h 
of the. ~~~~ri~u~ion’wi~l be. equa! .!q: . . , > ,, : 

_” 
:. : r : : ,, : ,.. ! 

. ‘. 
P 

d&& + 2*,‘* ‘:; : 1 ; ,/,.. T.1 ,” : ‘, ( I j, : ‘,., ,. ,,, ::; ::. . . 
(65) 

the suqmation takes ,.pl&ce 1 over: aU states; A gem&al .,conclusion ,now is that :.. :’ 
;:, j The laws governing the: behaviour,of :the:zeroth; first:and secdnd:moments, can 
be stat$d independently of the <model and.are to be ‘considered, asfundame$al ,laws; 

With the- derived fotiulae it was- possible to Iverify ..the ; general ; results : of 
KuCERA~,’ for the three state model. 

VINI@ defined a model which was. extended to ‘yt states by indudtion;: .His 
formulae, for the displacement and width can be derived from the general formulae. 
The ,fokmulae’ a& al& ‘applicable 1to:frontal analys’is as tias shown byrVIivjK8 by kaking 
the’ place: d&vatives,. I,, :.: : : , ,r. ’ : .. ., ’ I ; . :;’ i.: ; : ; - ‘., t, ; : 

So far transportation space has ,be&: treat&d .as .if ;it were devoid, of .structure; 
Such an assumption is certainly wrong in paper electrophoresis atid chromzitographic 
columns. In this case homogeneity is disturbed and the velocities become,functi,ons 
of x, y; x. The nature of,the, stabilizing medium does not permit a ,definite ‘stateme’& 
of these functions. The problem $sapproximajed in zi ‘&,&tistjcaJ,tiay. ~his~‘r@+is fhat : 

(a) vf and oa are fluctu&ing ~~a&&$lly;~,~.~‘~. ” ‘,>, : ., ,, :‘, .,,I,i _!. ; .‘jY: i:‘,, 1’ 

.(b) the mean values:for vf zind ‘vb-‘are ,lowefTd differer$ly ,.by ol$ructi$Fy, and 
tortuosity of. the substrate. 

‘, 
:. ,. : : : : a ‘. .:I’ : ,I$; .j , .’ :,, ‘. : .: I. 

‘. The influence on the’previously derived re&lts of this is: .). . . ‘. : L: ,: ‘, ‘. : ‘:r 

: ; (a), ,one .more term contributing, to the formula: ‘for the width of, the’ctincentrtition . 
peak; :,_,l_ ,‘,j ‘.,‘:,.,“. ,:‘.:,“‘?,, l:,‘:’ ‘,:‘:;.:‘::,,;,: li”:‘,:‘:,‘,, f,,“~~.,f’,,‘,‘~,t . I.” ‘; .: 1,’ :,““.‘I::,: 1.‘: :: ‘I! 
. . ,(b)‘:s&.&g down, of the, mean t&&port;:. .: ,’ ;. .,:. I.; “, ‘.i:“.. I.’ I, :‘, ‘,: ;.l,, :’ ‘;, , ‘:’ 

A co$il++~_ :To the +eyy!s is, ,$ff+lt ,$o ?~~,ess~ ff..thpFe ,$ any’cbntributioe 

at all,,it,.id,.piobably small;” ” ., ‘_’ 
*. ~: : ,, ,,, ;‘.:;,; ,’ 

There is still one. remarkable thing. Tt may occur, ~~l~&,:,~~ @t$+ ,d@&le?,l+tween : 
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two states in which the velocities.:are’opposite. In that case v’ will be small, but the 
solute ,:particles are travellingback and : forth; .xc from equation (64) ‘is the, ,mean 
travelling distance in, statei. :When the time constant z is.large, XC may become larger 
than the dimensions of the grainb,!and’ fibres of .the stabilizing medium. In <this case 
the-spreading;effects may be,excesaively large, .whereas in the opposite case there. is 
no influence ,at all. This problem may occur. in electrophoresis. In chromatography 
the problem does not exist ,as ‘all velocities have the same sign. 

CONCLUSION 
.’ ,. 

It is shown that it .,is possible to solve the general formulae describing the 
transport of matter under the influence of electric or dynamic forces and distributing 
itself linearly between several states. Each term in the formulae for the calculated 
moments has a distinct physical meaning. The results for the first and the second 
moment ‘are’ simple and it ‘.‘is’ ‘easy t.o exten’d the formulae to’ systems in which one 
&mpone’nt is distributed lbettieeii more tlian two’ states. For the calculation of the 
mean velo&ty and the width tie’need to know the fratition a of the solute,in each state 
and the time’constant z’of the system. If the separate reaction’velocitjl constants Zip 
are,not known, as is common, the at’s may be determined by chemical analysis or in a 
more sophisticated way together with z from N.M,R. or E.S.R. experiments., It is in 
general not, ,necessary to ,evaluate them from chromatographic or electrophoretic 
experiments. There is one thing still to note, being the’ effect on, the separation 
process of taking away, the driving forces at t,he end of a thin-layer. chromatographic 
or an electrophoretic separation.,:,It, iseasy. to. understand that, the system, proceeds 
in an exponential,way to.the &;tate in which ,theniass ‘centres of. the free and the’ bound 
state(s) ; coincide; -.while: the : distribution as :,a :‘whole stays at rest; From then. ‘on, 
broadening of the concentration. distribution&ily ‘arises from diffusion, 
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