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SUMMARY

General formulae for the transport of matter, under the influence of electric
or dynamic forces and which distributes linearly between two states, are derived
without any restriction about the nature of the partition process. The moments of
the concentration profile are calculated from the formulae. In those' moments each
term is physically clear. From the results the already known formulae for spec1a11zed
cases of the part1t1on process can easﬂy be demved

INTRODUCTION

The followmg expression governs the transport of matter under influence of
flow and dlffusxon in the unidimensional case

G).=—v@E@),+oGE), : o

or in short notation

3:6 ——-'—U axc + D-. 33:3;0

where v is the velocity of the substance. The movement of the substance may be
caused by displacement of the fluid in which the substance is d1ssolved as is the case
in chromatography, or by electric forces as in electrophoresis.
The other symbols are as follows:
c = concentration of the substance = ¢(x,¢),
= diffusion constant; D is assumed to be a constant. S :
In chromatography and electrophorems the moving substance is dlstnbuted
between a “free’’ and ‘‘bound’’ state. Distribution may result from the presence of a
stabilizing medium to which the substance is sorbed; complex  formation with a
second solute in excess is another possibility. In all these cases the partition process
is assumed to be quasi-linear, which means that (in the absence of transport and
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374 J. KRAGTEN

dlffusmn) the concentrations f and & in the free and bound state respectlvely, are
governed by

&f = —hf -+ __lzb ) o . v (2)
oo = + hf — b = ——3cf e L 3 (3)
where /, and /, are the mass transfer coeﬁiczents
W1th
T= (I + k1 ‘ - : - (4)
and the initial-condition f = f,, b = by we have : o ' e
t
/= (I py ) (fo ~+ bo) + T(lfo—I2bo)-e (5)
t
— L4 —_ —labg)-e *© , 4
b = (;55) (o + bo) —(ifo—labo)-e e
where the part1t10n coefﬁ01ent 4
—"l: SR ' b R o (7

deﬁnes the ethbnum state, Wthh is approached exponent1ally w1th a tnne constant

T, while f -+ b always equals f 4 by~
On adding this type of partition term to. equatlon (I) the followmg equatmns

for the combination of streaming, diffusion and partition are obtalned
Oif = — V5 Ogpf — (laf — 220) + Dy-0zzf ' . (8)

0t = — vp8zb + (l1f — l2b) + Dyp-Ozsd (9)

‘“When there is only one staté f and no dlffusmn or partltlon, it can easﬂy be
seen that the concentration peak will move with a velocity vy, because f(x —uvst) is a

solution of the differential equation
of = — Uy Ozf . | w " ' .
From physical considerations it is clear, that after some 1n1t1a1 effects the mass

centre of (f--b6) will move uniformly with a velocity 7.

We will now transform to a new coordinate system moving w1th thls veloc1ty,
by putting " =x —&-¢. This makes the mass centre stay -at rest with respect'to this
new system (A proper ch01ce of the or1g1n of the coordlnate system is of course this

mass centre ) So .
( 10)

aa:f == a:c'f' .
atf’ = acf + a'aa:f T _- | v v . I T L. (II)
with similar equat1ons for & and b. R R : '
e Substltutlon in' eqns (8) and (9) glves, on omlttmg prlmes: A
a,f_ (u—uf).axf—(zlf—zob) +D,f 3x:cf T e T (1)
acb (v —-va) 3;:6 - (le——lnb) 4 Da 3z:cb T ()
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TRANSPORT IN LINEAR PARTITION SYSTEMS 375

The assumption of linearity is quite correct. even in the presence of a-stabilizing
medium if partition takes place in the homogeneous phase inside the stabilizing
medium. The paper electrophoretic separation of metal ions in.a solutxon of citric acid
in excess is a example of such a system. : '

In chromatographic columns the stabilizing medmm 1tself part101pates in the
partition process. In these heterogeneous systems the assumption of linearity is only
approximately fulfilled. This can only lead to results more or less correct dependmg
on the geometry of the system. Furthermore the equations do not include the statis-
tical variations of the transport veloc1t1es caused by the gram or ﬁbre structure of
the stabilizing medium. ~

Temperature fluctuations arising from electnc re51stance differencesor from sorp-
tion reactions are also neglected, just like micro-scale gravitational turbulences, etc.

Thus, exact solutions to the equations (x2) and (x3) are of limited value as the
equations themselves are open to criticism. Moreover, we get more information than
required for practice. We aie interested in quantity, displacement, width'and skewness
of the mass distribution (f+ 4) and the intention is to deduce these variables from
the measured signals. These signals are obtained either as a function of time (elution
chromatography, gas chromatography) or as a function of place (electrophoresis, thin
layer chromatography). There is ‘a relation between the above mentioned vanables
and the moments of the signals which are defined by the partial integral:. o

M; = j'é" (&) - d&, where & is either the time or a coordinate depending on the
experimental. conditions. These moments are a—preferably. linear—function: of the
respective identically defined moments of the concentration distribution ; this function
is determined by the instrumental conditions. The moments. of the concentration
distribution are linear with respect to the above mentioned variables.

Several authors have shown that it is possible to obtain the moments of the
concentration distribution directly from equations (12) and (13), and depending on
their inclination they calculate either the time moments!-2 or the place moments*-8.

The time and place moments are of course strongly related to each other, as
the separation process itself is independent of the method of definition and measure-
ment. The mutual relationship will be discussed later in: this paper. Although there
is no fundamental difference between the two types of moments, we chose to calculate
the place moments as during the calculating procedure-the physical meaning -is
better. The place moments are yielded directly by mtegratlon of eqns. (12) and (13).
It will be shown that specification of the partition process is not necessary. Only
LjUNGGREN? has attempted to calculate the place moments in a similar way but he
either neglected the thermal diffusion or the electric field. It will be shown that during
the calculations the essence of the separation process can be followed step by step
and the physical meanmg and orlgm of each term can be ea511y understood

DEFINITIONS AND MEANING OF MOMDNTS

The separatmg system con51sts of a column: of 1nfm1te length w11:h a concentra—
tion peak of arbitrary form localized in a small region. : L
The 7th moments of the concentration distribution are deﬁned by

Fy = (xt-f-dx and By = [xt-b-dx ‘ : o (14)
We then have : ‘ AR

J. Chromatog:, 37.(1968) 373-384



376 . - : J. KRAGTEN

Fg is the total amount of substance in the free. state F,is a functlon of time

only, '
B, is the total amount in the bound state,
F, defines the centre of mass in the usual way. ' :
In addition, we define the coordinate xy of this mass centre by:

Fy = zp-Fo s R (15)

Similar relations hold for B,.
It is also well known that the variance u is indicative for the W1dth of a distri-

bution and that this quantity is deﬁned by

_ J(®—ap?f-adx ‘
which makes | o
e Er  (FiN F2 e
M= E (Fo) ~F 7 (17)

Analogous relatmns apply to us and B

The thlrd moments F 3 and B3 are related to the skewness of the concentration
peaks. The dlscussmn of these quantities is glven in the correspondmg section of this
paper. - :

.. " We shall now calculate the 7th moments. To do so we need the followmg equa-
tlons derived from the deﬁmtmn (14): :

j‘x‘ oif da = th; | ’ | o (18)
weoapear = (0 T )
- v. » (2 — .F—" B | = ) aee »

Slmxlar relatlons hold for the bound state b.
CALCULATION' OF, THE MOMENTS

The zeroth moment :
Integratmg (12) and (13) along the x-axis usmg eqns (18) (19) and (20) we

obtain
' dcFo = — (212Fo0 — I2Bo) | } ‘ - (21)
d¢Bo = -+ (lFo — l2Bo) (22)
because only the partition terms contribute. This would be expected as the chemical
reaction is the only way of changing the amount of substance in each state.
As (21) and (22) are identical with (2) and (3), with 1n1t1a1 condltlons F 0 =F0,
By =B, and inserting ¢ ={yF oy —;B ¢ and ‘ :
Foo + Boo = Mo ' ‘ (23)

we have
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TRANSPORT IN LINEAR PARTITION SYSTEMS : | 377

Fp == (I —T—‘y) My —cre * . | : ‘ . o N o (24)
¢ .
Bo=(I+ )M0+CT T . ‘ : (25)

In fact in the partltlon-only case of (2) and (3)

fo 2 Foo and bo = Bop

From these equations we conclude that transport and diffusion have no influence on
partltlon The steady state is exponentially approached with a tlme constant T and
in practice can be said to be reached after 4t. :

Note that in electrophoresis the electric field is only established: after m]ectlon
of the sample; so the constant c can be made zero and the steady state is 1rnmed1ately
reached

The ﬁrst moment ‘ ‘
On multiplying (12) and (13) by # and integrating along the x-axis' we find
that as a result of (20) the dlffusmn term does not contribute. We then have

aF = (w——v)Fo——(lel——zoBl). R ’; "‘('26)‘
.' dtBl (va——v)Bo + (11F1——l°31) : ' S (27)
, M1 F1+B1—-xfuMo ' e : (28)

we obtain from these equations for the velocxty vsp of the mass centre of the total
amount of substance : :
vy = — (Y ¥
'Ufb = dexpy = ('1 7
So from the definition of 7 in the coordinate transformation it follows that 7 1s equal
to the weighted arithmetic mean of vy and vp:

v—(l+gf)f+(l+ ) ‘ . S : ‘ : ~(3°)
It follows from (29), remembermg that the orlgm of the movmg coordlnate system
should be at the mass centre, after the dlsappearance of the initial effects that

ot

)r—5+(vo'—_—vf)-ff;'e‘ RS (29)

o ! : :
T -

M, _e _ (31)
All further derivations w111 be made in moving coordmates only. To find the values
of F, and B, we multiply (26) by /, and (27) by, and subtract the equations. From.

tlns we get after integrating*:

xrp = (Ur — Up)

¢

—_— ')/ I . — o . T
lel-zaBl‘—‘(H_y) (735) @ o) Mo+ (s + dwt)sF B )

Comblnmg this equation with (x35), (24) and (28) we obtain for the separate mass
centres of the free and the bound states:

- dy, dg, dg, f1 and f, are constants determined by the mxtxal condztxons, da, ri,,, da, f2 and f,,
are constants determined by the integration. - .
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¢

#r = (;5=) (s —vo)t + (@ + da)e” : o (33)

1 - - | -
Fo = (r + ,,) (vr—wvo)T + (ds + det)é d | » C (3&)

After disappearance of the exponential terms, which quickly occurs, we have:
Ax = wp —gp = (Vp—v0)T . . - .. - (35)
7 = oy — e S e
A=l —0 o . | (37)

and not withstanding:
xﬂ, == 0

The' shift of the mass centres with respect to each’ other, acqulred during the
lifetime of the exponentials and the shift towards the origin are noteworthy. The shifts
arise from the fact that when a molecule moves in state ‘“f*’ its velocity in movmg
coordinates equals (vy—7). The mean time for a molecule to be either in state.’’f’’ or
in state 6" is equal to 7. So we can understand both xr and xp as the mean displace-
mient of one molecule. These are equal to the d1splacements of the rnass centres of the

ensembles: of- molecules

T he second moment
Following the same procedure as for F, and B, we get for the second moment:

e By a (g — D) By i‘-‘z’zm;*-_zeea_—‘F:‘z-mz?q’;“‘. A £

dtBO' = 2(’1}b — E)Bl + (lle _— lan)‘ + 2D0B0 . : ) _ . . (39)

R
(I

With M,=F, -{--B2 we obtain after, addmg the equatmns
Ly y .
d‘M°"2{( +y) f+(:+ )D”}Mo__'-

(g () oo

t ' Y’

+ (A +fat)e T + (fa + f4t)e_T B S
Applymg (17) we obtam for the var1a.nce of the total amount of substance:

My xﬁ P T S T o | . e
.u = Mo fo | LR NS .. {47)

‘On ih’c’egféfi'ﬁg" (46) and cancelling of the exponentials
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TRANSPORT IN LINEAR PARTITION SYSTEMS 379

= s p)ors (o) o () (2l

SR R EEN )

L\ /¥
‘“°+2[D+(1+9/)(1+?)(Uf'—v") ] I R
_#0+2D' 4 AR | ‘. S ». R 1 .,". v (42)
In this case w, is the initial variance determmed by the width of: the concentration
peak at ¢=o0. Note that % u, at £ =o0 dccording to ‘the exponentials; their contri-
bution arises from a combination of the mass centre slnft away from the origin and
a mass partition unequal to Y. o o
... JFrom (42) it is clear that the peak is broadened by diffusion with a coefﬁc1ent
D equal to the welghted Tean! of Df and Db In add1t10n to d1ffus1on there is another
broademng effect proport10nal to the reactlon tlme constant 1: Tlns contnbutlon
arises from the' kinetics of the separatmn process and ‘has its'maximum whén y=1
and is zero for y = 0 and infinity. The' contribution can be understood from a ranidom
walk rnodel” If vy 1s the mean length of a step forward and ziis the mean length of a

PR TR PR T SIS S
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deMs = 3( (vs — D) Fa -+ (v — 0)Bz2} + 6(DsFy + DyB1)
= 3(vy — vo)t{ WF2 — laB2} + 6(DsF1 + DyB1) (48)

On substituting known F’s and B’s:

[

deM3z = 6 (I _::_ 9’) (I :—‘)’) (vp — ’Up)tMo { x?«—r—x'b' —+ Z(Df_——.Db). } ~- exponentiz(télﬁ.?)

Integ'rating and cancelling of the exponentials gives

S = So + { 12(vf — vb)T (x F y) (: - y) (D — Do)+

“+e<vf——v»a-=='<11,,>(11,)(::::)}-: N B

S is changmg hnearly with time. '‘The fir st t1rne-dependant term is a transport-
diffusion mixture term, which has its maximum for y = 1. The second one is a trans-
port-—partltxon term with a maximum for y=3.7 and T /3.7 and a zero value fory = 1.

We can substitute (50) in (45) and get somethmg hke '

: (So + B-2)
: 2(uo + 2D%%)
In most practical cases Sy ~ 0 and so (xfb—'xmax) rises from zero to an asymptotlc
time-independent value (8/4D’), assuming that the concentration distribution is

apprommately Ga.ussmn The magmtude of thls a.symptotlc value will be 1nvest1ga.ted

in two extreme cases:
(a) The dlffuswn determmes the w1dth of the concentratlon proﬁle Then ('Uf —up) 21’ < D

and

'; xj‘b—xmux‘r- (51)

3 ( i ) (I ) (Dr — Do) (vr — vy

. B8 _ Y .
The latter functlon for Dp =0 and y>1 reaches the extreme
’4%—’—3(01'—%)?—3(”1’—*0) f. ». o N (53)
(b) When (vr — vp)2t>>D the asymptotic value transforms in
B _3mw—1 . '
4D’ (y -+ 1) (or — vo)e ‘ (54)
with an extreme value of
3
4—%—, = ~ (vf—vo)f == —(xf——xb) R T e IR - (55)

The importance of these derivations is that the maximum distance between
maximum and mean of the concentration proﬁle is compa.rable with the shift of the
mass -centres f and & during the .separation process.. The skewness (xfb —%max)/0
dlmlmshes with respect to the root of the time, as it should, which i is in agreement
‘w1th the computer results of VINKS for his partition model. SEVEP Y
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DISCUSSION

We can now compare the results with formulae published in other papers.: .- .-
'LJUNGGREN* made a theoretical study of electrodiffusion by means of moment
analysrs He solved the equations after introduction of the moments by Fourier and
Laplace transformations but he either neglected the ordmary diffusion or the electric
field. He, nevertheless, derived a part1t10n—transport contr1but10n to the dlffusmn
term which agrees with the third term in eqn. (42). ‘
. In chromatography there is the. restrrctron Up = o and 1n addrtxon our partrtron
coefficient is related to R by y= R/I —R. Substltutlon transform the partrtron—
transport term in the well known result1® . .

‘*A,u—'zR(:—-R)vt,,L T DO (56)

_ VINK5 made a chromatographrc model in wlnch the partltron occurs between
two rows of umt cells of unequal volume per un1t of contact area and separa.ted by a
membrane In thls model the partition is controlled by the dlffusron in the bound
state 4. Thrs makes the klnetlc constants equal to

l . "2D . andl : ( 2.Dn ) (VI) :
1 Vovl” "_Vlvo Ve

Substitution shows agreement between his formulae? and equation (42). The

first and third term arise from the weighted mean of the diffusion coefficients; the
second term in lns formulae (34) orrgmates from the exchange between partrtron and
transport. »
In KuCERA's paper?, the model ‘is assumed to consrst of a column filled with
small porous grains. In this model the partition occurs in two steps, wsz. . diffusion
through the pores followed by sorption on the internal surfaces. First of all confining
our attentron to the calculatmn of the trme-moments in.this paper, and neglectmg
for a wlnle the extension to a tlnrd phase ) we should expect the relatron between
the zth tlme and 'I-th place moment to be srmply ' o

Ay = (v)‘ 4[4:

In thrs case, however, the broadenmg of the dlstr1butlon by drffusron and other
effects ds: neglected durmg the time. the drstnbutron passes the fixed place x=L.
An impression of the correction for this is obtamed by d1v1d1ng a'normal dlstnbutlon
into two parts and assuming that the mass points of each part of the distribution lie
at distances o and —o from the intersection. Now the elution time for the peak
w1ll be At == 2o-/v Durmg this trme the dlstance 20' grows accordmg to o= 2D' ¢ w1th

! . .D’ . D/‘:‘.
2Aa =2 4=
. a v

Half the mass shifts this dlstance makmg the sh1ft of the mass pomt of the whole

distribution equal to 2D’/ or in time coordinates A¢' = 2D'/72.-As the curve is lagging

behlnd the t1me d15crepancy has to be added glvmg
'wL STy » Y

= =
R /) "U“ a

)
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The additional term for the second moment originates from the same effect. The shift
in distance relative to the central mass point is 2D’/ for each part of the curve. So
the contrxbutmn to nyx w111 be (2D’/'u)2 ‘Substltutlon glves P '

L. 2D’ D% 2D’L spfa

o o 2Hx/v~ + (2D /U)27” = 2D’ (—: + ),+ =T H== o (58)

AT Coght i gs . g

e i

.. Both equations agree with the results of KUCERAl The' calculatmns ‘here are
of course not exact but they’ glve an 1dea. of the or1gm and the phys1ca1 meamng of
the several terms in the tirie moments. '

KUBIN? obtained some different results ori calculating the same time moments:
The discrepancy arises from his initial conditions. He injects a block function with a
time width ¢,, which glves a contribution to the first moment of 3¢,as a consequence
of the ‘mass pomt slnft relat1ve to'the ongln of: the coordinate system 'For the same
reason the second moment is e:\tencled by 1/12to (the inertia moment of a rectangular
box is 1/;,mi2). The dlstort1on contmbutlons of KUCERA are lost by an approxrmatmn

in the calculation.
We can now look at what happens when the number of states is e*:tended

For three states we have

'0cf "=?i(v'—'%’z{f) féxf.-l-_'Df"ZG'a:aéf'—- (lxzf”_—’{zrb) ‘—.—“(lmf-‘—lard)"' S (59)
o 5cb (v — vo) dzb + Dy+bzeb — (larh —-lvf) — (logb — lgpd) (6°)
D ed= — vd) 80d + Da-8and — (lond —lof) — (loed —lasb) . . (61)

ThlS system extends by one equatmn, ‘and s1mu1taneously each equatmn by one
excha.nge term, for each additional state Smnlarly to the case with two states, both
the time constant 7 and ‘the'factors «s determmmg the’ part1t1on of total mass M, over
the three states are only a function of the kinetic constants . In general, it is a com-
plicated function when both side and successive reactions exist. An 1mportant '
conclusmn is that there is only one time constant 7 for the whole system

A charactenstlc fact from the equatlons (59)—(6T) is that the sum of all’ kinetic

térms is zero. So they always Vamsh m the calculatlon of M t. Consequently from | '

e‘l“atmns (26) and (27) it - follows

d¢M1 (’Uf-— v)Fo + (Ub ——v)Bo + ('Ud —U)D " " ‘ L . - (62)

This equatlon is- fam111ar to us from mechamcs as it follows 1mmed1ate1y from the
definition of mass point. o
Equatlon (30) changes in the general case mto

I',

.‘,‘ ?J' .-;—= acf vf + oca vy + ocd ’Ud + _v Ji f‘ (63) “

In chromatography all Veloc1t1es are zero except vy makmg the reduced veloclty
51mp1y equal to the fraction of solute in the mobile phase. This can be stated in-
dependently of the column model and is a fundamental law of chromatographys.

JsChromatog., 37 (1068) 373-384
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- After.introduction of the moving coordinate system we get: for the steady state
s1m11ar to before: dtM; =0, x5 =0, Fy,B; étc. = constant. This implies.that-apart
from an exponential term the'terms (4B, —5D;), etc. occurrlng in the extended form
of equation (26) will not contain the terms:of any order in ¢; this agrees with equation
(32)."So d¢F, = d¢B="...=0. By comparing the procedure for solution of Fy and F;
combined with dimensional analysis it becomes clear how the t1me constant T depends
on the /-values and how.z enters the equations (33) and (34). SR

It can be verified that equations analogous to (33) and (34) can be derlved and
from these it can be deduced that the shift of the mass centre of each state is the

same as was found before (equations (36) and (37)). So the equation
_»x' (m—-v)‘r Co T e R _;--':(64)..

may be stated asa general equat1on O :
In the same way as before we can der1ve the t1me derlvatlve of the second

moment M. The equat1on 1s nearly the same as equatlon (40) On 1ntegrat1ng and
cancelllng of the exponentlals we get an equatlon like (42) So in general the W1dth '
of the, dlstnbutlon will be equal to: . . . e e i e .

‘u = uo + 2D' Cot v .1.-... ’ . ::.‘:A;'. IR '(65)
v"-— ZaiDi + E'atxt-’ I ¥ A D VI PRI E R T -(,65)
the summatmn takes place over: all states A general conclusmn now is that

- The laws governing the behaviour of the:zeroth; first:and second: moments can
be stated independently of the model and are to be considered as fundamental laws.

.With the"derived formulae it was. possible: to verify the: general results : of
KU(L‘ERA1 for the three state model.

ViINK® defined a model which was. extended to » states by mductlon His
formulae for the displacement and width can be derived from the general formulae.
The formulae are also: apphcable to: fronta.l analys1s as: was shown by VINKa by taklng
‘the place:derivatives.. " . co:oin o T N I

So far. transportatron space has. been treated as 1f 1t ‘were devord of structure
‘Such an assumption is certainly wrong in paper electrophoresis and chromatographic
~columns. In this case homogeneity is disturbed and the velocities become, functions
of x, y; z. The nature of the stabilizing medium does not permita deﬁnlte statement
of these functions. The problem is approx1mated ina statlstlcal way ThlS means that

- (a) vr and vp are fluctuating statlstlcally, R IR

-(b) the mean values.for vr and vp- are lowered chfferently by obstructlvrty and
tortu051ty of the substrate.. ' . . . NS
.“The influence on the’ prev:lously derived results of thls is: S e
(a) one more term contnbutmg to the forrnula for the w1dth of the concentratlon

»peak, o ! RTINS
(b)- slowmg down of the mean’ transport EERER R R e SELRE AR T
.. A contribution to the skewness is dlfﬁcult to assess If there is any contrlbutlon

' at all it s, probably small.” o
' There is still one. remarkable th1ng It may occur, that a solute d1v1des between_

7. Chromatog 37 (1968) 373-3847' |
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two states in which the velocities:are opposite. In that case ¢ will be small, but the ﬂ

solute particles are travelling ‘back and forth. #x; from equation (64) is the mean
travelling distance in state . When the time constant 7 is large, #; may become larger
than the dimensions of the grains.and fibres of the. stabilizing medium. In this case
the spreading:effects may be: excessrvely large, whereas in the opposite case there is
no influence at all. This problem may occur. in electrophorems In chromatography
the problem does not exist as all velocities have the same slgn : :

CONCLUSION R

It is shown that it is possible to solve the general formulae describing the
transport of matter under the influence of electric or dynamic forces and distributing
itself linearly between several states. Each term in the formulae for the calculated
moments has a distinct phys1cal ‘meaning. The results for the first and the second
moment are’ smiple and it is easy to extend the formulae to systems in which one
component is distributed between more than two states. For the calculation of the
mean veloc1ty and the width we'need to know the fraction « of the solute in each state
and the time constant 7 of the system If the separate reaction velocity constants by
are not known, as is common, the «s’s may be determined by chemical analysis or ina
more sophisticated way together with v from N.M.R. or E.S.R. experiments. It is in
general not necessary to evaluate them from chromatographic or electrophoretic
expenments There is one thing still to note, being the effect on ' the separation
process of taking away.the driving forces at the end of a thin-layer chromatographic
or an electrophoretic séparation.:It is easy. to. understand that the system proceeds
in an exponential way to the state in which the'mass centres of the free and the bound
state(s) - coincide, - while: the distribution as:a ‘whole. stays at rest. From ‘then.on,
broadenmg of the concentration dlstnbutlon only arises from diffusmn. L
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